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INTRODUCTION

Let t(A) be the result of prefixing the necessity operator [J to every
proper subformula, save conjunctions and disjunctions, of the formula A of
the language of the Heyting propositional calculus H. It is well-known that
H can be embedded by t in S4, i.e. A is provable in H iff t(A) is provable
in S4. Esakia (1979), and also Blok (1976), have shown that S4Grz (defined
below) is the maximal normal extension of S4 in which H can be embedded by t
(as a matter of fact, we find in Esakia (1979) not t, but the translation
which prefixes [J to every subformula; this translation is equivalent to t as
far as S4 and its normal extensions are concerned).

It is not difficult to find the minimal normal modal propositional logic
K4N, weaker than S4 (this logic, considered by Lemmon and Scott (1977, pp.
68-71), will be defined below), in which H can be embedded by t (cf. DoSen
1981 and 1986). We may then ask whether S4Grz is also the only. maximal
normal extension of K4N in which we can embed H by t, i.e. whether it is true
that H can be embedded by t in a normal modal propositional logic S iff S is
between K4N and S4Grz. We shall show in this paper that methods of Esakia
(1979) can be adapted to answer this question affirmatively.

This result depends essentially upon considering only normal modal prop-
ositional logics S. For nonnormal modal logics we may have minimal and maxi-
mal logics with respect to the embedding by t whose sets of theorems differ
from those of K4N and S4Grz respectively (the nonmaximality of S4Grz for non-
normal modal logics was considered by Chagrov (1985)). Our result also de-
pends upon using the translation t and not some analogous tramnslation, which
as far as S4 and its normal extensions are concerned is equivalent to t. We

shall consider in this paper the difficulties which we encounter with these
other tramslations.

The embeddings of H in K4N and related logics, which we shall consider
in the next two sections, suggest that we may show H complete with respect to
Kripke-style models in which the "accessibility" relation is not a quasi-
ordering, but satisfies weaker conditions. After a section on these Kripke-
style models, in the final section we shall make some brief comments on modal
embeddings of Heyting first-order predicate logic and Heyting arithmetic, and
on modal embeddings of classical logic.
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MODAL LOGICS

Qur basic nonmodal propositional language L will have countably many
propositional variables, the binary connectives +,A and V, and the unary
connective -1. The modal propositional language L[ will have in addition to
what we have in L the unary connective J. For formulae of L or L we use the
schematic letters A,B,C,...,A},... As usual, A<*B is defined as (A+B)A(B+A).

The Heyting propositional calculus in'L will-be denoted by H. The
system K in L0 is the classical propositional calculus extended with
0(A»B)+(0A»0B) and closed under the rules: modus ponens, substitution for
propositional variables and necessitation (i.e. from A infer [JA). We write
S'E€ S" when the theorems of the system S' are included among the theorems
of the system S". A system S in L[ is normal iff KES and S is closed under
the rules of K.

The normal system K4N will be obtained by extending K with (A-(TJA,
101(A+A) and O(0AVOB)+(OAVOB). It is easy to show that S4, i.e. K plus
UA+TJA and [JA>A, properly extends K4N. The normal system S4Grz is K extended
with 0J(0(A+(A)+A)+A. It is known that S4Grz properly extends S4 (see van
Benthem and Blok 1978 and Boolos 1979, Chapter 13).

The ‘translation t is a one-one mapping from L into L[ such that t(A) is
the result of prefixing [ to every proper subformula of A save conjunctions
and disjunctions. More precisely, t is defined as follows, via the transla-

tion s which prefixes [J to every subformula save conjunctions and disjunc-
tions:

s(A)= [JA, where A is a propositional variable,
s(A+B)= O(s(A)+s(B)),

s(AaB)= s(A)as(B), where a is A or V,

s(hA)= [hs(A);

t(A)= A, where A is a propositional variable,
t(ABB)= s(A)Bs(B), where B is +,A or vV,
t(1A)= 1s(A).

We write H—E*S-iff for every A in L we have that A is a theorem of H iff
t(A) is a theorem of S, i.e. H can be embedded by t in S. The following

lemma asserts that K4N is the minimal normal system in which H can be embed-
ded by t:

Lemma 1. (1) H—»K4N.
(2) 1f.S is normal .and H—t—rs, then K4NES.

Proof. (1) Let A be a theorem of H, and let s'(A) be obtained from A
by prefixing 0 to every subformula of A (including conjunctions and disjunc-
tions). Then by induction on the length of proof of A in H we can show that
s'(A) is a theorem of K4N. .To obtain that. t(A) -is--a-theorem of K4N we remove
superfluous necessity operators from s'(A) by using the fact that
O(0BAOC) «+(0BAOC) and O(OBVOC)<«>(OBVIIC) are theorems of K4N, and that K4N is

closed under replacement of equivalents and under the rules:

0OB-0c) 0108 |
Os-{c, 10B.

To prove H—S+K4N it remains to observe that K4NSS4, and appeal to the well-
known fact that H—S4,



(2) The minimality of K4N follows from the fact that OA+(J(0O(0Oc+c)-+0A),
100(0a+0a) and O0(O(0Oc+0c)-+(BavOB))+(0AVOB), where A,B and C are proposi-

tional variables, are t-translations of theorems of H. q.e.d.

This lemma is tied up to the particular translation t and the particular
primitive vocabulary we have assumed for L and LU. It is well-known that for
embedding H in S4 we may also use the translation t' which prefixes 0 to
every proper subformula (including conjunctions and disjunctions). 1Indeed,
in K4N and its normal extensions for every A in L we have that:

t(A) is provable iff t'(A) is provable
iff s(A) is provable
iff s'(A) is provable,

where s and s' are the two translations defined before Lemma 1 and in the
proof of Lemma 1. To sum up, we have the following translations:

prefixes [ to every

proper subformula save conjunctions and disjunctions
proper subformula

subformula save conjunctions and disjunctions
subformula

[ R ]

These various translations, which are not essentially different as far as
K4N and its normal extensions are concerned, induce different minimal normal

modal systems to replace K4N. Namely, the minimal normal modal system S such
that:

H-535 is Kt'= K + Oa<(0A, 107(A+A);
H—-S is Ks = K + 0(0a~0a), O01(A+A), O(O(CAVOB)+(0AvVOB)) ;

1

H—=>S is Ks'= K + 0(0a—{0a), 01071(a+A).

To demonstrate this (cf. DoSen 1981 and 1986) we proceed analogously to
what we had for Lemma 1, save for the following. To show that if A is a
theorem of H, then s'(A) is a theorem of Ks', we use the fact that Ks' is
closed under the rule:

0cA1+A3) 0B

OBLA;/A5]

where B[Aj/A;] is obtained from B by replacing zero or more occurrences of Aj
by A;; we also use the fact that if A is a theorem of H, then in Ks' we can
prove O(s'(A)+t'(A)), i.e. Os'(A)+s'(A) (remember that H has the disjunction
property, i.e. if BVC is provable in H, then either B or C is provable in H).
To show that if A is a theorem of H, then s(A) is a theorem of Ks, we use the
fact that the provability of B in K4N implies the provability of (OB in Ks,
and also the facts that BAC.is provable in H iff B and C-are provable in H,
and that BVC is provable in H iff B or C is provable in H. Finally, to show
that if A is a theorem of H, then t'(A) is a theorem of Kt', we use the fact
that the provability of -A -in-H implies the provability of s'(A) in Kt'; this
implies the provability of t'(A) in Kt' (remember again that H has the dis-
junction property).

With a different primitive vocabulary in L and L we may also end up
with a minimal normal system different from K4N. For example, if we have the
constant proposition 1 as primitive, instead of - (where 1A is defined as
A+l), and if L behaves in the translations t,t',s and s' as a propositional
variable, then the minimal normal system replacing K4N in Lemma 1 will be
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S4Grz

<

S4

K4N

Ks

Ks'

Fig. 1. Modal systems. (Arrows indicate proper inclusion.)

K4N = K + Oa+{T0a, O(OAVOB)+(0AVOB). This difference arises because with L
primitive we have:

t(QA)= t(A+1)
= s(a)->0L,

whereas with - primitive and 1 defined as 71(A+A) we have that t(7A) is equi-
valent to s(A)»+1. With L primitive, and the translations t', s and s', the
minimal normal systems will be the respective systems in the list above with
107(A+A) and 0W01(A+A) omitted. Let us denote these systems by Kt'®, Ks®° and
Ks'®. Then the modal systems which we have considered make the chart of

Fig. 1.

MODAL ALGEBRAS

Let HA=<H,n,u,—,1,0> be a Heyting algebra (called pseudo-Boolean
algebra by Rasiowa and Sikorski (1963)), and let TB=<B,N0,uU,-,1,0,I> be a
topological Boolean algebra (where - is Boolean complement and I an interior
operaton). If HA(B)={a€B: Ia=a}, and for a and b in HA(B) we define a—b as
I(-aub), then HA(TB)=<HA(B),N,U,—,1,0> is a Heyting algebra (which Esakia
(1979) calls the stencil of TB). )

By using a well-~known construction of McKinsey and Tarski (inspired by
Stone; see Rasiowa and Sikorski 1963, pp.128-130), we can embed a given
Heyting algebra HA=<H,0,U,—,1,0> in a topological Boolean algebra TB(HA)=
<TB(H),n,u,-,1,0,I> generated by H, where for every a€TB(H) there are
bl,...,bn,cl,...,cneﬂ such that a=(-bluc1)n...n(-bnucn) and
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Ia-(bl—*cl)n...n(b —>C ) It can then be shown that HA(TB(HA)) is isomorphic
with HA. For every TB we can prove the following lemma:

Lemma 2. TB(HA(TB)) is isomorphic to a subalgebra of TB.

Proof. For TB=<B,N,U,-,1,0,I> let B*={aeB: 3b),...,b 5cy,...,C€B
(b1=Ibj & ... & c=Ic, & a=(-bjucy)n...n(-byuc))}. It is easy to show that
TB*=<B*,N,U,-,1,0,I> is a subalgebra of TB. It remains to check that TB* is
isomorphic with TB(HA(TB)) (a detailed proof may be found in Maksimova and
Rybakov 1974, Lemmata 3.3 and 3.4). q.e.d.

So, we may always consider that TB(HA(TB)) is a subalgebra of TB, but not
necessarily isomorphic with TB. If TB(HA(TB)) is isomorphic with TB, follow-
ing Esakia (1979), we call TB a stenciled topological Boolean algebra.

We write TBFA iff for every valuation v from L[ into B we have v(A)=l in
TB, and we write TBES iff for every theorem A of the system S we have TBFA.
The essential result of Esakia which we need is the following:

Lemma 3. (Esakia 1979, Corollary 4.10) If A is not a theorem of S4Grz,
then there i$ a finite stenciled TB such that it is not the case that TBEA.

We shall call QTB=<B,0N,U,-,1,0,I> a quasi-topological Boolean algebra
iff <B,n,u,-,1,0> is a Boolean algebra and for every a,b€B we have:

I(anb)=Ianlb, Il=1, Ia=Ila, I0=0, I(Iaulb)=Iaulb.

Every topological Boolean algebra is quasi-topological (it satisfies moreover
Iaga), but not the other way round. It is easy to verify that A is a theorem
of K4N iff for every QTB we have QTBFA; namely, the Lindenbaum algebra of K4N
is a freely generated QTB.

If HA(QTB) is defined analogously to HA(TB), we can check that for every
QTB the algebra HA(QTB) is a Heyting algebra (this is contained in the fact
that H can be embedded in K4N by s'). For every QTB we can also prove the
following analogue of Lemma 2:

Lemma 4. TB(HA(QTB)) is isomorphic to a subalgebra of QTB.

The proof of this lemma proceeds quite analogously to the proof of Lemma
2. Note that without I0=0 this proof might be blocked, since we might be
unable to show that 0€B*. And without I(Iaulb)=Iaulb, we might be unable to
show that B* is closed under U (and under -).

Note also that in QTB* (obtained as TB* in the proof of Lemma 2) we have
for every a€B* that Iaga, though in QTB this is not the case for every a.
Indeed, QTB*, which is isomorphic with TB(HA(QTB)), is a topological Boolean
algebra. Lemma 4 yields as a corollary that for every quasi-topological
Boolean algebra QTB there is a topological Boolean algebra TB which is a sub-
algebra of QTB and such that HA(QTB) is isomorphic with HA(TB). (Compare this
with the fact, mentioned by Lemmon and Scott (1977, pp.70-71), that K&4N can
be axiomatized by extending K with (JA*{IJA and [B+B, -where every propositional
variable of B is within the scope of a [J.)

Let S be a normal system such that K4NES, and let VS={QTB: QTBES}. The
algebras in VS make a variety (because for every theorem A of S we can ask
from our QTB's that they satisfy a=1, where a is obtained from A by transla-
ting logical with algebraic symbols). Let now HA(VS)={HA(QTB): QTBEVS}. We
can prove the following (cf. Blok and Dwinger 1975, Theorem 4.1):

Lemma 5. HA(VS) is closed under homomorphic images and subalgebras.
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Proof. For closure under homomorphic images, suppose QTBEVS and
f: HA(QTB)—HA is an onto homomorphism. By Lemma 4, we have that TB(HA(QTB))
is a subalgebra of QTB, and since VS is a variety, TB(HA(QTB))€eVS. The homo-
morphism f can naturally be extended to a homomorphism g from TB(HA(QTB))
onto TB(HA) (for a=(-buci)n...n(-bpucy), take g(a)=(-f(b))uf(cy)in...n
£( -f(bg)Uf(cpy))). Since VS is a variety, TB(HA)EVS. But HA is isomorphic
with HA(TB(HA)). So, HA€HA(VS).

For closure under subalgebras, suppose QTBeVS and HA is a subalgebra of
HA(QTB). Then TB(HA) is a subalgebra of TB(HA(QTB)). Since TB(HA(QTB)) is
a subalgebra of QTB, we have that TB(HA) is a subalgebra of QTB, and since
VS is a variety, TB(HA)EVS. But HA is isomorphic with HA(TB(HA)), and,
hence, HA€HA(VS). q.e.d.

It is easy to show that HA(VS) is also closed under direct products; so,
HA(VS) is in fact a variety.

By "countable" in the following two .lemmata we understand "finitely or
infinitely countable" (countability is assumed in these lemmata because the
language L is assumed to be countable; without this assumption about L, we
could prove analogous lemmata without the assumption of countability).

Lemma 6. If H——+S, then for every countable HA there is a QTB€VS such
that HA(QTB) is isomorphic with HA.

Proof. Suppose B-5+5, and let s[Lind(S)1={[s(A)]: [s(A)IJeLind(S)},
where Lind(S) is the Lindenbaum algebra of S. Of course, Lind(S)eVS. The
Heyting algebra s[S]=<s[Lind(S)J,A,V,—,T,1>, where [s(A)J—[s(B)] is defined
as 0(1[s(A)IV[s(B)1), is a subalgebra of HA(Lind(S))EHA(VS). So, by Lemma 5,
s[SJeHA(VS). On the other hand, s[S] can be shown isomorphic with Lind(H),
the Lindenbaum algebra of H. We can define f: L1nd(H)—+s[S] by £([A))=[s(A)].
That f is a one-one mapping is shown as follows:

f([aD)=£([B]) iff [s(A)]=[s(B)]
iff s(A)«+s(B) is provable in S
iff t(A+B) and t(B+A) are provable in $
iff A«<*B is provable in H, since we have H—S
iff [AJ=[B].

It follows easily that f is a homomorphism and onto. So, Lind(H)€HA(VS).

Since Lind(H) is a free Heyting algebra, there is a homomorphism from
Lind(H) onto an arbitrary countable HA. According to Lemma 5, HAEHA(VS).
q.e.d.

Lemma 7. If H—E»s, then every countable stenciled topological Boolean
algebra belongs to VS.

Proof. Suppose H—£+S, and let TB be a countable stenciled topological
Boolean algebra. Then HA(TB) is a countable Heyting algebra, and by Lemma 6,
there is a QTBEVS such that HA(TB) is isomorphic with HA(QTB). Since TB is
isomorphic with TB(HA(TB)), which is isomorphic with TB(HA(QTB)), we obtain

by Lemma 4 that TB is a subalgebra of QTB. Since VS is a variety, TBEVS.
q.e.d.

We are now ready to prove our generalization of the theorem of Esakia
and Blok:

Theorem. Let S be normal. Then H—S+S iff K4NCS S S4Grz.

Proof. Suppose H—t-rs. Then by Lemma 1, we have K4NES. If A is not a

286



237

theorem of S4Grz, then by Lemma 3 there is a finite stenciled TB such that
not TBFA; hence, by Lemma 7, TBe€VS, and it follows that A is not a theorem of
S. So, SES4Grz. TFor the other direction it is enough to appeal to the fact
that H can be embedded by t in K4N and S4Grz. q.e.d.

This method of proving our theorem depends essentially upon using the
particular translation t and the particular primitive vocabulary of L and L[J.
To see that this is indeed the case, consider the normal modal systems from
the previous section which are properly contained in K4N. These systems lack
either 101(A+A) or [(0AV(B)-+(0AVOB), and, hence, in the analogues of our
quasi-topological Boolean algebras we would not have either I0=0 or I(Iaulb)=
Iaulb. As we have remarked after Lemma 4, the lack of these principles might
block our proof. So, we leave open the question what form an analogue of our
theorem should take with one of the translations t', s or s', or with L prim-
itive, instead of 1.

KRIPKE-STYLE MODELS

The embedding of H in K4N and in weaker normal modal systems suggests
that we may obtain a completeness proof for H with respect to Kripke-style
models in which the "accessibility" relation is not a quasi-ordering, but
satisfies weaker conditions.

Let us first consider modal Kripke models with respect to which K4N may
be shown complete (cf. Lemmon and Scott 1977, pp.68-71). These models are
of the form <X,R,v,>, where X is a nonempty set of "worlds" (we shall use

X3¥YsZ5...5X]5... as variables ranging over X), R is a binary relation over X
which satisfies: '

(1) vx,y,z((xRy & yRz) > xRz), i.e. R is transitive,
(2) vx3y(xRy), i.e. R is serial,
(3) vx,y),y2({xRy; & xRyy) ® 3z(xRz & zRy; & zRy,)),

and the basic valuation v, maps the propositional variables of L[ into PX,
i.e. the power set of X. As usual, v, is extended to a valuation v: I[J—PX
by the following recursive clauses:

v(A)= v, (A), where A is a propositional variable,
v(A+B)= (X-v(A))uv(B),

v(AAB)= v(A)av(B), .

V(AVB)= v(A)uv(B), v(1AY=X-Y(A)},

v(@A)= {x: vy(xRy > yev(A))}.

A formula A holds in a model <X,R,v > iff v(A)= X.

The corresponding models for H, which we shall call Ht models, are of
the form <X,R,v,>, where X and R are as above, and v,, which maps the propo-
sitional variables of L into PX, satisfies the following condition for every
propositional variable A and every xeX:

xev, (A) < Vy(xRy 3 yev,(4)).

In ordinary Kripke models for H this condition is usually assumed only from
left to right, because the converse holds trivially when R is reflexive.
But in Ht models the implication from right to left is not automatically

satisfied. A basic valuation v, is extended to a valuation v: L—PX by the
following usual recursive clauses:

v(A)= v, (A), where A is a propositional variable,
v(A+B)= {x: Vvy(xRy > (yev(A4) = yev(B)))},



v(AAB)= v(A)av(B),
v(AVB)= v(A)uv(B),
v(iA)= {x: Vy(xRy 3> yé¢v(a))l.

As before, A holds in an Ht model iff v(A)=X.

Then we can prove by induction on the complexity of A that for every
formula A of L and every.x€X the following holds:

(Heredity) xev(A) < Vy(xRy > yev(A)).

In proving Heredity, the transitivity of R is used in the cases when A is of
the form B+C and 1B, the seriality of R is used when A is of the form 1B,
whereas condition (3) for R is used when A is of the form BVC.

With the help of Heredity, we can easily verify by induction on the
length of proof of A that if A is provable in H, then A holds in every Ht
model. The converse, i.e. completeness, follows immediately from complete-
ness with respect to ordinary Kripke models for H, and the fact that every
ordinary Kripke model for H is an Ht model.

We may also expect to obtain models for H from models for our normal
modal systems weaker than K4N, in which H can be embedded by various trans-
lations. These models for H would roughly correspond to the modal models as
Ht models correspond to models for K4N, However, in these Kripke-style
models for H we would have to modify in some cases the clauses for v, and in
some cases the Heredity condition and the definition of holding in a model.
In models which correspond to translations where [J is not omitted before
disjunctions (namely, in models which correspond to Kt', Ks', Kt'® and Ks'®),
the clause for v(AVB) would be:

v(AVB)= {x: Vy(xRy 2 (yev(A) or yev(B)))}

rather than v(AVB)= v(A)uv(B). In models which correspond to translations
where [J is not prefixed only to proper subformulae (namely, in models which
correspond to Ks, Ks', Ks® and Ks'®), Heredity would be replaced by the fol-
lowing conditional Heredity:

3z(zRx) > (xev(A) & Vvy(xRy = yev(A)))

and holding in a model would be redefined as follows: A holds in a model
iff vx(3z(zRx) 2 xev(A)). In models which correspond to systems based on 1
primitive (namely, in models which correspond to the systems with the super-
script o), the clause for v(l) would be:

v(1)= {x: not 3y(xRy)}

rather than v(L1)= @#. (Since these last models need not have a serial R, we
may have in them "blind worlds" in which 1 holds. Heredity will guarantee
that in these worlds every formula of L holds too; conditional Heredity will
guarantee the same thing for blind worlds x such that 3z(zRx). This resembles
the modified Kripke models of Veldman (1976) with their "exploding worlds".

So, these various weak models for H would bring in some complications.
On the other hand, foxr Ht models the.clauses for v, as well as the Heredity
condition and the definition of holding in a model, are exactly as for

ordinary Kripke models for H. The only difference is in the conditions for
R.

To conclude we note as a curiosity that the + and +,A fragments of H
can be shown sound and complete with respect to models <X,R,v,> for which
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everything is as for Ht models save that R is only transitive. However, it

would be wrong to conclude from this that these two fragments of H can be
embedded by t in K4, i.e. K + [JA~{JJA.

CONCLUDING COMMENTS

We shall close this paper with some brief comments on the embeddings of
the Heyting first-order predicate calculus in modal first-order predicate
logics, on the embeddings of Heyting arithmetic in modal extensions of Peano
arithmetic, and, finally,.on the embeddings of classical logic in modal ex-
tensions of Heyting's logic.

Let L) be the first-order language which has individual constants and
variables, predicate constants, the propositional connectives of L: and the
quantifiers Vx and 3Jx. The language L;[ has [ in addition to that. First-
order K in L;[J is the classical first-order predicate calculus extended with
0(a»B)+(0A~{IB) and closed under: modus ponens, necessitation and universal
generalization. A system in Lj[] is normal iff it includes the theorems of
first-order K and is closed under its rules.

The translation t;': L;—1L,;00 prefixes like t' a [J to every proper sub-
formula of a formula A of L;, whereas t): L;—L;0 prefixes []J to every proper
subformula save conjunctions, disjunctions and subformulae with an initial
existential quantifier. Then it. is not difficult to prove that the minimal
normal first-order system in which the Heyting first-order predicate calculus
can be embedded by t;' is first-order K extended with JA<{IJA and 107(A+A)
(to prove that we use, besides the disjunction property, the analogous exist-
ence property of the Heyting predicate calculus). With t; instead of t;'
this minimal normal first-order system will be K4N;, which is first-order K
extended with [JaA-{TJA, 107(a+A), O(0avOB)+(0AVOB) and 03x0aA+3xz0A. With &

primitive, instead of 1, we would omit 1(J1(A+A) from these minimal systems.

With translations from L; into L;0J analogous to s and s' matters are not
so straightforward (as explained in DoSen 1986). It is the lack of a prin-
ciple like the Barcan formula which produces difficulties in finding the
minimal normal first-order systems in which the Heyting first-order predicate
calculus can be embedded by these translations.

Next, let us mention that first-order Heyting arithmetic can be embedded
by a translation analogous to t; in modal extensions of first-order Peano
arithmetic, with the additional operator [J, which lie in between the K4N;
extension of Peano arithmetic and the S4 extension of Peano arithmetic. To
demonstrate that the provability of A in Heyting arithmetic implies the prov-
ability of the translation of A in K4N; Peano arithmetic, we proceed analo-
gously to what we had for Lemma 1(1). That the provability of the transla-
tion of A in S4 Peano arithmetic implies the provability of A in Heyting
arithmetic was shown recently (see Flagg and Friedman 1986 for an elegant
proof). Similar embeddings of Heyting arithmetic in appropriate modal exten-
sions of Peano arithmetic contained in S4 Peano arithmetic can be proved with
translations analogous to other modal translations we have considered. Can
we prove such an embedding for the S4Grz extension of Peano arithmetic?

Besides the modal embeddings of Heyting's logic considered in this paper
there is another famous type of embedding connected with Heyting's logic.
Namely, classical logic can be embedded in Heyting's logic by various forms
of the double-negation translation. Underlying this type of embedding there
is also a modal tramslation.

Classical logic can be embedded by the translation s' into S5-like
extensions of Heyting's logic, and in the case of propositional logic we can



easily determine the minimal normal modal extension of H (where "normal" is
understood relative to H) in which we can embed the classical propositional
calculus C by s'. This is the system H5p~, obtained by extending H with the
modal postulates of Ks' and O(0AVO0A) (see DoSen 1986). To determine the
maximal normal extension of H in which we can embed C by s' is a straight-
forward matter (we have nothing like the complications connected with S4Grz).
This is the system Ctriv= C + [JA<+*A, obtained by extending H with 0(@AvO10A)
and JA<A. This maximality of Ctriv is proved like the fact that all con-
sistent normal extensions of H + 1001(A+A) are included in Ctriv (see DoSen
1985, Lemma 1). The system Ctriv is a conservative extension of C in L, but
not of H in L. Can we find a maximal system (not necessarily unique) among
the normal extensions of H in which C can be embedded by s', which are con-
servative extensions of H in L?

One such maximal conservative normal extension of H is the system Hdp=
H + JA<11A. The embedding of C in Hdn by s' amounts to the simplest double-
negation translation, where double negation is prefixed to every subformula.
The translation s' is uneconomical for embedding C in Hdn: if 0 in s'(A) is
omitted in front of +,A and 1, we obtain a formula equivalent in Hdp. But
the economy brought up by the translations t, t' and s is not now available.
Of course, for embedding C in Ctriv the economy can be total: all necessity
operators are superfluous.

However, not all normal extensions of H, conservative with respect to H
in L, in which we can embed C by s', are included in Hdn. One such extension
which is not included in Hdn is obtained by adding A*A to HSp~. (That this
system is conservative with respect to H in L may be proved with the help of
models investigated in Ono 1977, Sotirov 1984, DoSen 1985 and 1986a.) The
economy brought up by the translations t, t' and s is now available, as well

as a more thorough economy which omits every [0 except those prefixed to prop-
ositional variables.

The general form of the embeddings considered here is the following. We
have two nonmodal systems S' and S" such that S' is a proper subsystem of S",
and we are able to show that:

(1) S' can be embedded by a modal translation in S" plus some modal
postulates,

and vice versa:

(ii) S" can be embedded by a modal translation in S' plus some modal
postulates.

Embeddings of H in modal systems with the nonmodal base' C are of type (i),
whereas embeddings of C in modal systems with the nonmodal base H are of type
(ii). (The embeddings of classical and Heyting's logic into "linear logic"
envisaged by Girard (1987) are like embeddings of type (ii).) For both
types, one direction of our embeddings, that one which from the provability
of A in the nonmodal systed infers the provability of the translation of A in
the modal system, is usually proved by a straightforward induction on the
length of proof. The other direction is in principle more difficult to prove
for type (i), because for type (ii) we usually have the following simple pro-
cedure. Our modal extension of S' must contain among other modal postulates
the modal translations of theorems of S" missing from S'. To show that the
provability of the modal translation of A in this extension of S' implies the
provability of A in S", we use the fact that our modal extension of S' is
included in S" plus A<~ A, and that this last system is a conservative exten-

sion of S". This simple procedure is not available for embeddings of type
(i).

240



291

REFERENCEZE

vzn Benthem, J.F.A.K., and Blok, W.J., 1978, Transitivity follows from
Dummett's axiom, Theoria, 44:117-118.

Blok, W.J., 1976, "Varieties of Interior Algebras", dissertation, Uni-
versity of Amsterdam.

Blok, W.J., and Dwinger, Ph., 1975, Equational classes of closure alge-
bras 1, Indag. Math., 37:189-198.

Boolos, G., 1979, "The Unprovability of Consistency: An Essay in Modal
Logic", Cambridge University Press, Cambridge.

Chagrov, A.V., 1985, Varieties of logical matrices (in Russian), Alge-
bra i Logika, 24:426-489 (English translation in: Algebra and
Logic, 24:278-325).

DoSen, K., 1981, Minimal modal systems in which Heyting and classical
logic can be embedded, Publ. Inst. Math. (Beograd) (N.S.), 30
(44):41-52.

DoSen, K., 1985, Models for stronger normal intuitionistic modal
logics, Studia Logica, 44:39-70.

DosSen, K., 1986, Modal translations and intuitionistic double negation,
Logique et Anal. (N.S.), 29:81-94.

DoSen, K., 1986a, Higher-level sequent-systems for intuitionistic modal
logic, Publ. Inst. Math. (Beograd) (N.S.), 39(53):3-12.

Esakia, L.L., 1979, On the variety of Grzegorczyk algebras (in Rus-
sian), in: "Issledovaniya po neklassicheskim logikam i teorii
mnozhestv", Nauka, Moscow, 257-287 (Math. Rev. 813j:03097; ac-
cording to references in this paper, the results presented were
announced in 1974),

Flagg, R.C., and Friedman, H., 1986, Epistemic and intuitionistic
formal systems, Ann. Pure Appl. Logic, 32:53-60.

Girard, J.-Y., 1987, Linear logic, Theoret. Comput. Sci., 50:1-102.

Lemmon, E.J., and Scott, D.S., 1977, "An Introduction to Modal Logic:
The 'Lemmon Notes'", Blackwell, Oxford.

Maksimova, L.L., and Rybakov, V.V., 1974, On the lattice of normal
modal logics (in Russian), Algebra i Logika, 13:188-216 (English
translation in: Algebra and Logic, 13:105-122).

Ono, H., 1977, On some intuitionistic modal logics, Publ. Res. Inst.
Math. Sci. (Kyoto), 13:687-722.

Rasiowa, H., and Sikorski, R., 1963, "The Mathematics of Metamathemat-
ics", Parfistwowe Wydawnictwo Naukowe, Warsaw.

Sotirov, V.H., 1984, Modal theories with intuitionistic logic, in:
"Mathematical Logic", Proceedings of the Conference Dedicated to
Markov, Bulgarian Academy of Sciences, Sofia, 139-171.

Veldman, W., 1976, An intuitionistic completeness theorem for intui-
tionistic predicate logic, J. Symbolic Logic, 41:159-166.




